The shade avoidance syndrome: A non-Markovian stochastic growth model
نویسندگان
چکیده
منابع مشابه
The shade avoidance syndrome: a non-Markovian stochastic growth model.
Plants at high population density compete for light, showing a series of physiological responses known as the shade avoidance syndrome. These responses are controlled by the synthesis of the hormone auxin, which is regulated by two signals, an environmental one and an internal one. Considering that the auxin signal induces plant growth after a time lag, this work shows that plant growth can be ...
متن کاملNon-Markovian stochastic resonance.
The phenomenological linear response theory of non-Markovian stochastic resonance (SR) is put forward for stationary two-state renewal processes. In terms of a derivation of a non-Markov regression theorem we evaluate the characteristic SR-quantifiers; i.e., the spectral power amplification (SPA) and the signal-to-noise ratio (SNR), respectively. In clear contrast to Markovian-SR, a characteris...
متن کاملNMSPA: A Non-Markovian Model for Stochastic Processes
In this paper we introduce a new Stochastic Process Algebra: NMSPA. This new language presents the usual features of stochastic models but probability distributions are not restricted to be exponential. This fact increases the expressive power of the language in several ways. For example, we can specify actions that can be executed with probability 1 in a finite amount of time, so-called passiv...
متن کاملThe shade-avoidance syndrome: multiple signals and ecological consequences.
Plants use photoreceptor proteins to detect the proximity of other plants and to activate adaptive responses. Of these photoreceptors, phytochrome B (phyB), which is sensitive to changes in the red (R) to far-red (FR) ratio of sunlight, is the one that has been studied in greatest detail. The molecular connections between the proximity signal (low R:FR) and a model physiological response (incre...
متن کاملThe phytohormone signal network regulating elongation growth during shade avoidance.
In contrast to animals, plants maintain highly plastic growth and development throughout their life, which enables them to adapt to environmental fluctuations. Phytohormones coordinately regulate these adaptations by integrating environmental inputs into a complex signalling network. In this review, the focus is on the rapid elongation that occurs in response to canopy shading or submergence, a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Theoretical Biology
سال: 2010
ISSN: 0022-5193
DOI: 10.1016/j.jtbi.2010.02.039